
Summations for certain series containing the digamma function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 3011

(http://iopscience.iop.org/0305-4470/39/12/010)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 3011–3020 doi:10.1088/0305-4470/39/12/010

Summations for certain series containing the digamma
function

Allen R Miller

1616 Eighteenth Street NW 210, Washington, DC 20009-2525, USA

Received 9 August 2005, in final form 16 December 2005
Published 8 March 2006
Online at stacks.iop.org/JPhysA/39/3011

Abstract
Apparently new summations in terms of well-known special functions are
deduced for hypergeometric-type series containing a digamma function as a
factor. As a by-product of this investigation new reduction formulae for the
Kampé de Fériet function F

0:2;1
2:1;0 [x, x] are obtained.

PACS numbers: 02.30.−f, 02.30.Gp

1. Introduction

Although numerous series containing the digamma or psi function ψ(z) (which is usually
defined as the logarithmic derivative of the gamma function, i.e. ψ(z) ≡ �′(z)/�(z)) have
been collected and recorded by Hansen [3, pp 360–366] many significant gaps still remain.
Thus it is the purpose of this work to deduce several apparently new results among which are

∞∑
k=1

ψ(b + k)

k!
xk = x ex

b

{
2F2

(
1 , 1 ;
2 , b + 1 ; − x

)
+ bψ(b)

(
1 − e−x

x

)}
, (1.1a)

∞∑
k=1

ψ(b + k)

(b)k
xk = x ex

b2

{
2F2

(
b , b ;

b + 1 , b + 1 ; − x

)
+ bψ(b)1F1

(
b ;

b + 1 ; − x

)}
,

(1.1b)

and for |x| < 1
∞∑

k=1

ψ(b + k)xk = x

1 − x

{
ψ(b) +

1

b
2F1

(
1, b ;
b + 1 ;x

)}
(1.2)

(which may be rewritten also as equation (3.6)), where the pFq are generalized hypergeometric
functions, the Pochhammer symbol (b)k is defined by (b)k ≡ �(b + k)/�(b), and x and b are
complex numbers such that b �= 0,−1,−2, . . . . Note that when b = 1 equations (1.1a) and
(1.1b) coincide since (1)k = k! and 1F1(1; 2;−x) = (1−e−x)/x. Note also that the confluent
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hypergeometric function in equation (1.1b) is essentially an incomplete gamma function since
1F1(b; b + 1;−x) = bx−bγ (b, x).

Sums of the type containing the digamma function considered herein occur often in
mathematical physics and other applied areas especially when deriving asymptotic expansions
and exact results for Mellin–Barnes (see e.g. [8, 9]) and other integrals. Thus, when
possible it is advantageous to be able to recognize and express such sums in terms of known
special functions in order to facilitate easier computation or further theoretical developments.
Additional results will be discussed in section 5. In section 6 as a by-product of this
investigation we deduce two new reduction formulae for the Kampé de Fériet function
F

0:2;1
2:1;0 [x, x].

2. Transformation and reduction formulae

Essentially we shall derive equations (1.1) and (1.2) by using and exploiting appropriate
connections between three results involving Kampé de Fériet functions (see e.g. [11] for an
introduction to these functions) that have already been recorded earlier.

First, we note the transformation formula

F
1:p;0
1:q;0

[
α : (ap); ——;
β : (bq); ——; x, y

]
= eyF

0:p+1;1
1:q;0

[
—— : α, (ap) ; β − α;

β : (bq) ; ——; x,−y

]
,

(2.1)

where (ap) denotes the sequence of parameters a1, a2, . . . , ap. This result is derived in
[6, equation (3.6)] by essentially writing the Kampé de Fériet function on the left as a
series indexed by m � 0 containing the confluent functions 1F1(α + m;β + m; y) and then
utilizing Kummer’s first theorem 1F1(a; b; y) = ey

1F1(b−a; b;−y) to obtain the right side of
equation (2.1). Note that when x = 0 equation (2.1) reduces to Kummer’s result with a = α

and b = β.
Second, we shall need the reduction formula

F
r:1;0
s:1;0

[
(αr) : a; ——;
(βs) : b; ——;x,−x

]
= r+1Fs+1

(
(αr), b − a ;

(βs), b ; − x

)
(2.2)

which is recorded in [11, p 31, equation (45)] in a slightly different form and can easily be
shown to be a consequence of Gauss’s summation theorem for the series 2F1(1).

Third, we shall utilize the reduction formula derived in [7, p 201]:

F
p:2;1
q:1;0

[
(µp) : b − 1, 1 ; 1 ;
(νq) : b ; —— ; x, x

]
= (1 − b)ψ(b − 1)p+1Fq(1, (µp); (νq); x)

− (1 − b)

∞∑
m=0

ψ(b + m)
(µp)m

(νq)m
xm, (2.3)

where b �= 0,−1,−2, . . . , (µp)m ≡ (µ1)m(µ2)m · · · (µp)m and when p = 0 the latter product
is empty and understood to reduce to unity.

We mention that if only the upper (numerator) parameter b − 1 in the Kampé de Fériet
function in equation (2.3) is replaced by α, then a more general reduction formula may be
obtained in terms of two generalized hypergeometric functions (cf [5, equation (9)]), but in
this case the result just alluded to is not valid when α = b − 1.

In what follows we shall utilize two forms of a specialization of equation (2.3). In
particular, set p = 0 and let b �→ b + 1 thus giving

F
0:2;1
q:1;0

[
—— : b, 1 ; 1 ;
(νq) : b + 1 ; —— ;x, x

]
= −bψ(b)1Fq

(
1 ;

(νq) ;x
)

+b

∞∑
m=0

ψ(b + 1 + m)

(νq)m
xm
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which may also be written as

F
0:2;1
q:1;0

[
—— : b, 1 ; 1 ;
(νq) : b + 1 ; —— ;x, x

]
= b

∞∑
m=0

(ψ(b + 1 + m) − ψ(b))
xm

(νq)m
.

In these two results replace m by m − 1 and adjust the initial summation index accordingly.
Thus since (α)m−1 = (α − 1)m/(α − 1) we have

F
0:2;1
q:1;0

[
—— : b, 1 ; 1 ;
(νq) : b + 1 ; —— ; x, x

]
= −bψ(b)1Fq

(
1 ;

(νq) ; x

)

+
b

x

∞∑
m=1

ψ(b + m)

{
q∏

i=1

νi − 1

(νi − 1)m

}
xm (2.4a)

and

F
0:2;1
q:1;0

[
—— : b, 1 ; 1 ;
(νq) : b + 1 ; —— ; x, x

]
= b

x

∞∑
m=1

(ψ(b + m) − ψ(b))

{
q∏

i=1

νi − 1

(νi − 1)m

}
xm

(2.4b)

where in the latter the index may be started at m = 0 since it provides no contribution.

3. Summation of the series in equations (1.1) and (1.2)

In equation (2.1) let p = q = 1 and y = −x. Thus dispensing with the parametric subscripts
(here and in what follows) gives

F
1:1;0
1:1;0

[
α : a; ——;
β : b; ——;x,−x

]
= e−xF

0:2;1
1:1;0

[
—— : α, a ; β − α ;

β : b ; —— ;x, x

]
.

And in equation (2.2) letting r = s = 1 yields

F
1:1;0
1:1;0

[
α : a; ——;
β : b; ——;x,−x

]
= 2F2

(
α, b − a ;

β, b ; − x

)
.

Thus we have the reduction formula

F
0:2;1
1:1;0

[
—— : α, a ; β − α;

β : b ; ——; x, x

]
= ex

2F2

(
α, b − a ;

β, b ; − x

)
which when specialized with α = c, and β = c + 1 gives

F
0:2;1
1:1;0

[
—— : a, c ; 1 ;
c + 1 : b ; —— ;x, x

]
= ex

2F2

(
c, b − a ;
c + 1, b ; − x

)
. (3.1)

In equation (3.1) letting first b �→ b + 1 and then setting c = 1, a = b provides

F
0:2;1
1:1;0

[
—— : b, 1 ; 1 ;

2 : b + 1 ; —— ;x, x

]
= ex

2F2

(
1, 1 ;

2, b + 1 ; − x

)
. (3.2a)

But from equations (2.4a) and (2.4b) respectively upon setting q = 1, and ν = 2 we have also

F
0:2;1
1:1;0

[
—— : b, 1 ; 1 ;

2 : b + 1 ; —— ; x, x

]
= −bψ(b)1F1(1; 2; x) +

b

x

∞∑
m=1

ψ(b + m)

m!
xm

(3.2b)

and

F
0:2;1
1:1;0

[
—— : b, 1 ; 1 ;

2 : b + 1 ; —— ;x, x

]
= b

x

∞∑
m=1

(ψ(b + m) − ψ(b))
xm

m!
. (3.2c)
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Thus from equations (3.2) upon noting that 1F1(1; 2; x) = (ex − 1)/x we have

∞∑
m=1

ψ(b + m)

m!
xm = x ex

b
2F2

(
1 , 1 ;
2 , b + 1 ; − x

)
+ ψ(b)(ex − 1)

which may be rewritten as equation (1.1a) and the more elegant result

∞∑
m=1

[ψ(b + m) − ψ(b)]
xm

m!
= x ex

b
2F2

(
1 , 1 ;
2 , b + 1 ; − x

)
. (3.3)

Now in equation (3.1) letting first b �→ b + 1 and then setting a = 1, c = b provides

F
0:2;1
1:1;0

[
—— : b, 1 ; 1 ;
b + 1 : b + 1 ; —— ;x, x

]
= ex

2F2

(
b , b ;

b + 1 , b + 1 ; − x

)
. (3.4a)

And in equation (2.4a) set q = 1, and ν = b + 1 thus giving also

F
0:2;1
1:1;0

[
—— : b, 1 ; 1 ;
b + 1 : b + 1 ; —— ; x, x

]
= −bψ(b)1F1(1; b + 1; x) +

b2

x

∞∑
m=1

ψ(b + m)

(b)m
xm.

(3.4b)

Now equating the right sides of equations (3.4), and rearranging terms yields

b2

x

∞∑
m=1

ψ(b + m)

(b)m
xm = ex

2F2

(
b , b ;

b + 1 , b + 1 ; − x

)
+ bψ(b)1F1(1; b + 1; x).

Since by Kummer’s first theorem 1F1(1; b + 1; x) = ex
1F1(b; b + 1;−x), we deduce

equation (1.1b).
Finally, to derive equation (1.2) in equation (2.4a) let q = 0 thus giving

2F1(1, b; b + 1; x)1F0(1;−; x) = −bψ(b)1F0(1;−; x) +
b

x

∞∑
m=1

ψ(b + m)xm. (3.5)

Noting that 1F0(1;−; x) = (1 − x)−1, and rearranging terms then yields

b

x

∞∑
m=1

ψ(b + m)xm = 1

1 − x
[bψ(b) + 2F1(1, b; b + 1; x)].

Now multiplying both sides of the latter equation by x/b we have equation (1.2).
Note that since 1F0(1;−; x) in equation (3.5) does not converge on the unit circle |x| = 1,
equation (1.2) is valid only when |x| < 1.

Another derivation of equation (1.2) is given as follows. Starting with the functional
relation for the digamma function

ψ(z + 1) = ψ(z) +
1

z

let z = b + k, multiply both sides of the latter by xk , and sum over k � 0 thus giving

∞∑
k=0

ψ(1 + b + k)xk =
∞∑

k=0

ψ(b + k)xk +
∞∑

k=0

xk

b + k
.

Now adjusting the summation index on the left and observing that the second sum on the
right is equal to 2F1(1, b; b + 1; x)/b, where b �= 0,−1,−2, . . . and |x| < 1 for convergence
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of Gauss’s function 2F1(x) we have

1

x

∞∑
k=1

ψ(b + k)xk = ψ(b) +
∞∑

k=1

ψ(b + k)xk +
1

b
2F1

(
1, b ;
b + 1 ;x

)
.

Solving for the k-summation then yields equation (1.2) which may also be written more
elegantly as

∞∑
k=1

[ψ(b + k) − ψ(b)]xk = 1

b

x

1 − x
2F1

(
1, b ;
b + 1 ;x

)
, (3.6)

where b �= 0,−1,−2, . . . and |x| < 1. Note that equation (3.6) may be obtained immediately
from equation (2.4b) upon setting q = 0.

4. The specialization b = 1

We mentioned in section 1 that when b = 1, equations (1.1a) and (1.1b) coincide. Furthermore,
in this case we have from either of equations (1.1) or (3.3)

∞∑
k=1

[ψ(k + 1) − ψ(1)]
xk

k!
= x ex

2F2

(
1, 1 ;
2, 2 ; − x

)
, (4.1)

where x is an arbitrary complex number. An alternative elementary derivation of equation (4.1)
(which is given in a much different form) is outlined in [1, p 459, example 16].

However, if x is restricted to nonzero real values since for x > 0

x2F2

(
1, 1 ;
2, 2 ; − x

)
= γ + ln x − Ei(−x)

and

x2F2

(
1, 1 ;
2, 2 ;x

)
= Ei(x) − γ − ln x,

where Ei(x) is the exponential-integral function (cf [2, section 8.214]) and γ = −ψ(1) is
Euler’s constant, we have from equation (4.1) for x > 0

∞∑
k=1

[ψ(k + 1) − ψ(1)]
xk

k!
= ex[γ + ln x − Ei(−x)] (4.2a)

and
∞∑

k=1

[ψ(k + 1) − ψ(1)]
(−x)k

k!
= e−x[γ + ln x − Ei(x)]. (4.2b)

Equations (4.2) are recorded by Hansen (see [3, p 363, equations (55.7.1) and (55.7.2)], where
other references are also provided), but the restriction on the variable x is ambiguous.

Equations (4.2) may be written in simplified forms as
∞∑

k=0

ψ(k + 1)
xk

k!
= ex[ln x − Ei(−x)]

and
∞∑

k=0

ψ(k + 1)
(−x)k

k!
= e−x[ln x − Ei(x)],

where x > 0.
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The specialization b = 1 in equation (1.2) gives for |x| < 1
∞∑

k=1

ψ(k + 1)xk = x

1 − x
[ψ(1) + 2F1(1, 1; 2; x)].

Upon multiplying both sides of this by x, adjusting the summation index, and noting that
2F1(1, 1; 2; x) = −x−1 ln(1 − x) we have

∞∑
k=2

ψ(k)xk = x2

1 − x
ψ(1) − x ln(1 − x)

1 − x
.

And since
∞∑

k=2

xk = x2

1 − x

we see that
∞∑

k=2

[ψ(k) − ψ(1)]xk = x ln(1 − x)

x − 1
, |x| < 1

which is recorded in [3, p 361, equation (55.3.1)].

5. Additional results

Upon letting b �→ b + 1 we see that equation (2.3) may be written more elegantly as
∞∑

m=0

[ψ(b + 1 + m) − ψ(b)]
(µp)m

(νq)m
xm = 1

b
F

p:2;1
q:1;0

[
(µp) : b, 1 ; 1 ;
(νq) : b + 1 ; —— ;x, x

]
, (5.1)

where b �= 0,−1,−2, . . .. The leftmost sum of the latter is the most general generalized
hypergeometric-type sum containing the single digamma function ψ(b + 1 + m) as a factor;
and equation (5.1) shows that these sums are truly hypergeometric in the sense that they may
be written essentially as a double generalized hypergeometric (i.e. a Kampé de Fériet) function
in two (equal) variables. Moreover, when the latter function is capable of reduction to a known
hypergeometric or special function in one variable, equation (5.1) becomes especially useful.
We have already exploited this feature in section 3 and we shall provide additional applications
in what follows.

In equation (2.4b) let q = 2 and set ν1 = 2, ν2 = b + 1. Thus upon multiplying by x/b2

we obtain
∞∑

m=1

[ψ(b + m) − ψ(b)]
xm

(b)mm!
= x

b2
F

0:2;1
2:1;0

[
—— : b, 1 ; 1 ;

2, b + 1 : b + 1 ; —— ;x, x

]
. (5.2)

In [7, equation (6.12)] we obtained a reduction formula for F
0:2;1
2:1;0 [x, x] that with various

renamings of the parameters and variables may be written as

F
0:2;1
2:1;0

[
—— : α, β ; 1 ;

α + 1, β + 1 : γ ; —— ; x, x

]

= α

α − β
0F1

(
—— ;

1 + α − β ; x

)
3F4

(
β,

γ +β−α

2 ,
1+γ +β−α

2 ;
γ, β + 1, 1 + β − α, γ + β − α ; 4x

)

+
β

β − α
0F1

(
—— ;

1 + β − α ; x

)
3F4

(
α,

γ +α−β

2 ,
1+γ +α−β

2 ;
γ, α + 1, 1 + α − β, γ + α − β ; 4x

)
.
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In this set β = 1, α = b, γ = b + 1 which yields

F
0:2;1
2:1;0

[
—— : b, 1 ; 1 ;

2, b + 1 : b + 1 ; —— ; x, x

]

= b

b − 1
0F1

(
—— ;

b ; x

)
3F4

(
1, 1, 3/2 ;

1 + b, 2, 2 − b, 2 ; 4x

)

+
1

1 − b
0F1

(
—— ;
2 − b ; x

)
3F4

(
b, b, 1+2b

2 ;
1 + b, 1 + b, b, 2b ; 4x

)
. (5.3)

The latter hypergeometric function reduces to one of lower order and so from equations (5.2)
and (5.3) we have

∞∑
m=1

[ψ(b + m) − ψ(b)]
xm

(b)mm!
= x

b(b − 1)

[
0F1

(
—— ;

b ; x

)
3F4

(
1, 1, 3/2 ;

2, 2, 1 + b, 2 − b ; 4x

)

− 1

b
0F1

(
—— ;
2 − b ; x

)
2F3

(
b, 1

2 + b ;
2b, 1 + b, 1 + b ; 4x

)]
(5.4)

where b is not an integer (positive, negative or zero).
For example, if we set b = 1/2 and let x �→ −x2/4 in equation (5.4), since there is no

contribution to the sum from m = 0 we obtain
∞∑

m=0

[
ψ

(
1

2
+ m

)
− ψ

(
1

2

)]
(−x2/4)m

(1/2)mm!
= x2

[
0F1

(
—— ;
1/2 ; − x2

4

)
2F3

×
(

1, 1 ;
2, 2, 3/2 ; − x2

)
− 20F1

(
—— ;
3/2 ; − x2

4

)
1F2

(
1/2 ;

3/2, 3/2 ; − x2

)]
.

(5.5a)

Noting that ψ(1/2) = −γ − 2 ln 2 and observing that the four hypergeometric functions in
the order of their appearance may be written essentially as a cosine, integral cosine, sine, and
integral sine (see e.g. [10, section 7] for the exact pertinent connecting formulae) we obtain
from the latter after simplification

∞∑
m=0

ψ

(
1

2
+ m

)
(−x2/4)m

(1/2)mm!
= cos x

[
ln

(x

2

)
− ci(2x)

]
− sin x

[π

2
+ si(2x)

]
, (5.5b)

where the integral sine si(x) and cosine ci(x) are defined respectively by

si(x) ≡ −
∫ ∞

x

sin t

t
dt, ci(x) ≡ −

∫ ∞

x

cos t

t
dt.

The result given by equation (5.4) is not valid for positive integers b; and so in this case
we shall derive a representation for the sum

∑∞
m=0 ψ(b + m)xm/(b)mm! by exploiting the

result (cf [3, p 363, equation (55.7.11)])
∞∑

m=0

ψ(ν + m)
xm

(ν)mm!
= �(ν)x

1−ν
2

[
1

2
Iν−1(2

√
x) ln x − ∂

∂ν
Iν−1(2

√
x)

]
, (5.6)

where Iν(z) is the modified Bessel function.
It is known for nonnegative integers n (see e.g. [4, p 71, section 3.2.3]) that

∂Iν(z)

∂ν

∣∣∣∣
ν=n

= (−1)n

[
−Kn(z) +

1

2
n!

n−1∑
k=0

(−1)k(2/z)n−k

(n − k)k!
Ik(z)

]
, (5.7)
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where Kν(z) is the Macdonald function (or Bessel function of imaginary argument), and the
latter finite sum vanishes when n = 0. Since

Iν−1(z) = d

dz
Iν(z) +

ν

z
Iν(z), (5.8)

it is evident that
∂

∂ν
Iν−1(z)

∣∣∣∣
ν=n

= d

dz

∂

∂ν
Iν(z)

∣∣∣∣
ν=n

+
n

z

∂

∂ν
Iν(z)

∣∣∣∣
ν=n

+
In(z)

z
. (5.9)

Moreover, since
d

dz
Kν(z) = −Kν−1(z) − ν

z
Kν(z)

and from equation (5.8)
d

dz
Iν(z) = Iν−1(z) − ν

z
Iν(z),

differentiating both members of equation (5.7) with respect to z yields

d

dz

∂

∂ν
Iν(z)

∣∣∣∣
ν=n

= (−1)n

[
Kn−1(z) +

n

z
Kn(z) − n!

2

n−1∑
k=0

(−1)k
(2/z)n−k

k!

Ik(z)

z

+
n!

2

n−1∑
k=0

(−1)k(2/z)n−k

(n − k)k!

(
Ik−1(z) − k

z
Ik(z)

)]
.

Thus, by using the latter together with equation (5.7) we have from equation (5.9) after
simplification the result

∂

∂ν
Iν−1(z)

∣∣∣∣
ν=n

= In(z)

z
+ (−1)n

[
Kn−1(z) +

1

2
n!

n−1∑
k=0

(−1)k(2/z)n−k

(n − k)k!
Ik−1(z)

]
, (5.10)

where n = 0, 1, 2, . . . . Finally, equations (5.10) with z = 2
√

x and (5.6) with ν = n yield
∞∑

m=0

ψ(n + m)
xm

(n)mm!
= (n − 1)!x

1−n
2

{
1

2
In−1(2

√
x) ln x − In(2

√
x)

2
√

x

+ (−1)n−1

[
Kn−1(2

√
x) +

1

2
n!

n−1∑
k=0

(−1)kx
k−n

2

(n − k)k!
Ik−1(2

√
x)

]}
, (5.11)

where n = 1, 2, 3, . . . .

In particular, when n = 1 equation (5.11) provides (upon nothing that I−n(z) = In(z) for
integers n)

∞∑
m=0

ψ(1 + m)
xm

m!2
= 1

2
I0(2

√
x) ln x + K0(2

√
x) (5.12)

which is a well-known result (cf [3, p 363, equation (55.7.7)]).
Next, we shall deduce a representation for

∑∞
k=0 ψ(1 + k)xk/(n)kk! for positive integers

n. In [8, p 253, Ex. 8.3] Olver records an expansion for the Macdonald function Kn(z) for n
a nonnegative integer:

Kn(z) = 1

2

(
2

z

)n n−1∑
k=0

(n − k − 1)!

k!

(−z2

4

)k

− (−1)n ln
( z

2

)
In(z)

+ (−1)n
1

2

( z

2

)n
∞∑

k=0

[ψ(1 + k) + ψ(1 + n + k)]
(z2/4)k

k!(n + k)!
, (5.13)
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where the finite k-summation vanishes when n = 0. A few elementary manipulations reveal
that this sum may be written in closed form as

n−1∑
k=0

(n − k − 1)!

k!

(−z2

4

)k

= (−z2/4)n−1

�(n)
3F0(1, 1, 1 − n;−; 4/z2).

Thus rearranging the terms of equation (5.13), letting n �→ n − 1, setting z = 2
√

x, and
observing that (n + k − 1)! = (n)k�(n) gives

∞∑
k=0

ψ(1 + k)xk

(n)kk!
+

∞∑
k=0

ψ(n + k)xk

(n)kk!
= n − 1

x
3F0(1, 1, 2 − n;−; 1/x)

+ (n − 1)!x
1−n

2 [In−1(2
√

x) ln x + 2(−1)n−1Kn−1(2
√

x)], (5.14)

where n = 1, 2, 3, . . . .

Finally, employing equation (5.11) we obtain for positive integers n

∞∑
k=0

ψ(1 + k)
xk

(n)kk!
= n − 1

x
3F0(1, 1, 2 − n;−; 1/x)

+ (n − 1)!x
1−n

2

{
1

2
In−1(2

√
x) ln x +

In(2
√

x)

2
√

x)

+ (−1)n−1

[
Kn−1(2

√
x) − 1

2
n!

n−1∑
k=0

(−1)kx
k−n

2

(n − k)k!
Ik−1(2

√
x)

]}
. (5.15)

Note that when n = 1, equations (5.14) and (5.15) reduce to equation (5.12).

6. Two reduction formulae

We may use equations (5.1) and (5.15) to obtain a heretofore unavailable reduction formula
for the Kampé de Fériet function F

0:2;1
2:1;0 [x, x]. In equation (2.4b) let q = 2 and set ν1 = 2,

ν2 = n + 1, b = 1 thus giving

n

x

∞∑
m=1

[ψ(1 + m) − ψ(1)]
xm

(n)mm!
= F

0:2;1
2:1;0

[
—— : 1, 1 ; 1 ;

2, n + 1 : 2 ; —— ;x, x

]
.

The left side of the latter may be written as

n

x

∞∑
m=1

[ψ(1 + m) + γ ]
xm

(n)mm!
= n

x

∞∑
m=0

[ψ(1 + m) + γ ]
xm

(n)mm!

since ψ(1) = −γ . And so noting that

0F1(−; n; x) = (n − 1)!x
1−n

2 In−1(2
√

x) (6.1)

we deduce

F
0:2;1
2:1;0

[
—— : 1, 1 ; 1 ;

2, n + 1 : 2 ; —— ; x, x

]

= n

x

{
γ (n − 1)!x

1−n
2 In−1(2

√
x) +

∞∑
m=0

ψ(1 + m)
xm

(n)mm!

}
, (6.2)
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where for positive integers n the summation is given by equation (5.15). Thus equation (6.2)
provides the required reduction formula. When n = 1 this reduces via equation (5.12) to

F
0:2;1
2:1;0

[
—— : 1, 1 ; 1 ;
2, 2 : 2 ; —— ; x, x

]
= 1

x

[(
γ +

1

2
ln x

)
I0(2

√
x) + K0(2

√
x)

]
. (6.3)

Another reduction formula may be obtained by employing equations (5.2) and (5.11) the
former of which provides for b = n a positive integer

F
0:2;1
2:1;0

[
—— : n, 1 ; 1 ;

2, n + 1 : n + 1 ; —— ;x, x

]
= n2

x

∞∑
m=0

[ψ(n + m) − ψ(n)]
xm

(n)mm!
,

since the contribution to the sum from m = 0 is obviously zero. Thus using equation (6.1) we
have

F
0:2;1
2:1;0

[
—— : n, 1 ; 1 ;

2, n + 1 : n + 1 ; —— ; x, x

]

= n2

x

{ ∞∑
m=0

ψ(n + m)
xm

(n)mm!
− ψ(n)(n − 1)!x

1−n
2 In−1(2

√
x)

}
, (6.4)

where the summation is given by equation (5.11). When n = 1 equation (6.4) also reduces to
equation (6.3). Moreover, the reduction formula given by equation (6.4) provides the analogue
of equation (5.3) when b is a positive integer n.
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p:2;1
q:1;0 J. Math. Anal. Appl. 151 428–37

[6] Miller A R and Moskowitz I S 1991 Incomplete weber integrals of cylindrical functions J. Franklin Inst.
328 445–57

[7] Miller A R and Srivastava H M 1995 Further reducible cases of certain Kampé de Fériet functions associated
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